25 research outputs found

    Enhanced Raman and photoluminescence response in monolayer MoS2_2 due to laser healing of defects

    Full text link
    Bound quasiparticles, negatively charged trions and neutral excitons, are associated with the direct optical transitions at the K-points of the Brillouin zone for monolayer MoS2_2. The change in the carrier concentration, surrounding dielectric constant and defect concentration can modulate the photoluminescence and Raman spectra. Here we show that exposing the monolayer MoS2_2 in air to a modest laser intensity for a brief period of time enhances simultaneously the photoluminescence (PL) intensity associated with both trions and excitons, together with \sim 3 to 5 times increase of the Raman intensity of first and second order modes. The simultaneous increase of PL from trions and excitons cannot be understood based only on known-scenario of depletion of electron concentration in MoS2_2 by adsorption of O2_2 and H2_2O molecules. This is explained by laser induced healing of defect states resulting in reduction of non-radiative Auger processes. This laser healing is corroborated by an observed increase of intensity of both the first order and second order 2LA(M) Raman modes by a factor of \sim 3 to 5. The A1g_{1g} mode hardens by \sim 1.4 cm1^{-1} whereas the E2g1^1_{2g} mode softens by \sim 1 cm1^{-1}. The second order 2LA(M) Raman mode at \sim 440 cm1^{-1} shows an increase in wavenumber by \sim 8 cm1^{-1} with laser exposure. These changes are a combined effect of change in electron concentrations and oxygen-induced lattice displacements.Comment: 15 pages, 5 figures, Journal of Raman Spectroscopy, 201

    Symmetry-dependent phonon renormalization in monolayer MoS2 transistor

    Full text link
    Strong electron-phonon interaction which limits electronic mobility of semiconductors can also have significant effects on phonon frequencies. The latter is the key to the use of Raman spectroscopy for nondestructive characterization of doping in graphene-based devices. Using in-situ Raman scattering from single layer MoS2_2 electrochemically top-gated field effect transistor (FET), we show softening and broadening of A1g_{1g} phonon with electron doping whereas the other Raman active E2g1_{2g}^{1} mode remains essentially inert. Confirming these results with first-principles density functional theory based calculations, we use group theoretical arguments to explain why A1g_{1g} mode specifically exhibits a strong sensitivity to electron doping. Our work opens up the use of Raman spectroscopy in probing the level of doping in single layer MoS2_2-based FETs, which have a high on-off ratio and are of enormous technological significance.Comment: 5 pages, 3 figure

    Sharp Raman Anomalies and Broken Adiabaticity at a Pressure Induced Transition from Band to Topological Insulator in Sb2Se3

    Full text link
    The nontrivial electronic topology of a topological insulator is thus far known to display signatures in a robust metallic state at the surface. Here, we establish vibrational anomalies in Raman spectra of the bulk that signify changes in electronic topology: an E2 g phonon softens unusually and its linewidth exhibits an asymmetric peak at the pressure induced electronic topological transition (ETT) in Sb2Se3 crystal. Our first-principles calculations confirm the electronic transition from band to topological insulating state with reversal of parity of electronic bands passing through a metallic state at the ETT, but do not capture the phonon anomalies which involve breakdown of adiabatic approximation due to strongly coupled dynamics of phonons and electrons. Treating this within a four-band model of topological insulators, we elucidate how nonadiabatic renormalization of phonons constitutes readily measurable bulk signatures of an ETT, which will facilitate efforts to develop topological insulators by modifying a band insulator

    Coupled Phonons, Magnetic Excitations and Ferroelectricity in AlFeO3: Raman and First-principles Studies

    Full text link
    We determine the nature of coupled phonons and magnetic excitations in AlFeO3 using inelastic light scattering from 5 K to 315 K covering a spectral range from 100-2200 cm-1 and complementary first-principles density functional theory-based calculations. A strong spin-phonon coupling and magnetic ordering induced phonon renormalization are evident in (a) anomalous temperature dependence of many modes with frequencies below 850 cm-1, particularly near the magnetic transition temperature Tc ~ 250 K, (b) distinct changes in band positions of high frequency Raman bands between 1100-1800 cm-1, in particular a broad mode near 1250 cm-1 appears only below Tc attributed to the two-magnon Raman scattering. We also observe weak anomalies in the mode frequencies at ~ 100 K, due to a magnetically driven ferroelectric phase transition. Understanding of these experimental observations has been possible on the basis of first-principles calculations of phonons spectrum and their coupling with spins

    Raman Evidence for Superconducting Gap and Spin-Phonon Coupling in Superconductor Ca(Fe0.95Co0.05)2As2

    Full text link
    Inelastic light scattering studies on single crystal of electron-doped Ca(Fe0.95Co0.05)2As2 superconductor, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at TSM ~ 140 K and superconducting transition temperature Tc ~ 23 K, reveal evidence for superconductivity-induced phonon renormalization; in particular the phonon mode near 260 cm-1 shows hardening below Tc, signaling its coupling with the superconducting gap. All the three Raman active phonon modes show anomalous temperature dependence between room temperature and Tc i.e phonon frequency decreases with lowering temperature. Further, frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory-based calculations, we show that the low temperature phase (Tc < T < TSM) exhibits short-ranged stripe anti-ferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies

    Etude de filtration sur charbon actif regenere biologiquement. Procede C.E.A

    No full text
    SIGLECNRS-CDST / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Raman signatures of pressure induced electronic topological and structural transitions in Bi2Te3

    Get PDF
    We report Raman signatures of electronic topological transition (ETT) at 3.6 GPa and rhombohedral (alpha-Bi2Te3) to monoclinic (beta-Bi2Te3) structural transition at similar to 8 GPa. At the onset of ETT, a new Raman mode appears near 107 cm(-1) which is dispersionless with pressure. The structural transition at similar to 8 GPa is marked by a change in pressure derivative of A(1g) and E-g mode frequencies as well as by appearance of new modes near 115 cm(-1) and 135 cm(-1). The mode Grilneisen parameters are determined in both the alpha and beta-phases. (C) 2011 Elsevier Ltd. All rights reserved

    Photophysical behavior of poly(propyl ether imine) dendrimer in the presence of nitroaromatic compounds

    No full text
    This paper deals with a study of the photophysical property of poly(ether imine) (PETIM) dendritic macromolecule in the presence of aromatic compounds. The inherent photoluminescence property of the dendrimer undergoes quenching in the presence of guest aromatic nitro-compounds. From life-time measurements study, it is inferred that the lifetimes of luminescent species of the dendrimer are not affected with nitrophenols as guest molecules, whereas nitrobenzenes show a marginal change in the lifetimes of the species. Raman spectral characteristic of the macromolecular host-guest complex is conducted in order to identify conformational change of the dendrimer and a significant change in the stretching frequencies of methylene moieties of the dendrimer is observed for the complex with 1,3,5-trinitrobenzene, when compared to other complexes, free host and guest molecules. The photophysical behavior of electron-rich, aliphatic, neutral dendritic macromolecule in the presence of electron-deficient aromatic molecules is illustrated in the present study. (C) 2012 Elsevier B.V. All rights reserved
    corecore